Postsyntactic operations and Turkic 3PL Agreement Patterns

Eszter Ótott-Kovács

eo264@cornell.edu

Tu+7 UConn, Feb 19, 2022

1. Introduction

The plural feature can be:

1. Unmarked: Kazakh

Bala-lar Wstwkkœl-ge bar-dw-Ø.

child-PL Issyk-Kul-DAT go-3PST-PL

The plural feature can be:

1. Unmarked: Kazakh

Bala-lar Wstwkkœl-ge bar-dw-Ø.

child-PL Issyk-Kul-DAT go-3PST-PL

2. Marked by /lAr/: Turkish

Çocuk-lar Issık Göl-e git-ti-ler. child-pl Issyk-Kul-dat go-3PST-pl

The plural feature can be:

1. Unmarked: Kazakh

Bala-lar Wstwkkœl-ge bar-dw-Ø.

child-PL Issyk-Kul-DAT go-3PST-PL

2. Marked by /lAr/: Turkish

Çocuk-lar Issık Göl-e git-ti-ler. child-pl Issyk-Kul-dat go-3PST-pl

3. Marked by /(I) s/: Kyrgyz

Baldar Wswk-Kœl-gœ bar-wʃ-tw.

child.pl Issyk-Kul-dat go-PL-3PST

'The children went to the Issyk-Kul.'

The plural feature can be:

1. Unmarked: Kazakh

Bala-lar Ustwikkel-ge bar-dw-Ø. Plural exponent is /Ø/

child-PL Issyk-Kul-DAT go-3PST-PL

2. Marked by /lAr/: Turkish

Çocuk-lar Issık Göl-e git-ti-ler. Plural exponent is /lAr/child-PL Issyk-Kul-DAT go-3PST-PL

3. Marked by /(I) s/: Kyrgyz

Baldar Wswk-Kœl-gœ bar-ws-tw.

child.pl Issyk-Kul-dat go-Pl-3PST

'The children went to the Issyk-Kul.'

/(I) syncretism

Focus of the talk: Kyrgyz/(I)ʃ/

Marked by /(I) s/: Kyrgyz

(1) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3PST 'The children went to the Issyk-Kul.'

Focus of the talk: Kyrgyz/(I)ʃ/

Marked by /(I) \(\int \) Kyrgyz

- (1) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-Dat go-Pl-3PST 'The children went to the Issyk-Kul.'
- (2)* Baldar Wswk-Kœl-gœ bar-dw-lar. (The Turkish pattern) child.pl Issyk-Kul-dat go-3PST-PL
- (3)? Baldar Wswk-Kœl-gœ bar-dw-Ø. (The Kazakh pattern) child.pl Issyk-Kul-dat go-3pst-pl

The semi-optionality of the plural /(I) f/ marker is due to optional impoverishment in the context of [-participant, -speaker]. Also see Bamyacı et al. 2014 for the lack of overt plural exponent with non-agentive 3PL subjects; the same descriptive generalizations observed in Bamyacı et al. 2014 carry over to Kyrgyz as well.

Roadmap

2. /(I) ʃ/ is an agreement marker

/(I) some of the second of the

- /(I) s not a not a marker of "phrasal cumulativity" (Kratzer 2008)
- (1a) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst

'The children separately went to the Issyk-Kul.' (MULTIPLE going events)

/(I) some of the second of the

- /(I) ʃ/ is not a not a marker of "phrasal cumulativity" (Kratzer 2008)
- (1a) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst 'The children **separately** went to the Issyk-Kul.' (**MULTIPLE** *going* events)
- (1b) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst 'The children **together** went to the Issyk-Kul.' (**ONE** going event)

The same observation holds for other verbs, e.g., lift up the piano

(I) f patterns with agreement features

- Certain clausal constructions do not have agreement features:
 - /(I)p/ manner adverbial clauses
 - Relative clauses

(I) f/ patterns with agreement features

- Certain clausal constructions do not have agreement features:
 - /(I)p/ manner adverbial clauses
 - Relative clauses
- (4a) [biz dzasa-gan] kætsæ-lær [we live-RC] street-PL 'the streets [where we live]'
- (4b) * [biz d͡ʒaʃa-gan-wbwz] kætʃæ-lær [we live-RC-1PL] street-PL

(I) f/ patterns with agreement features

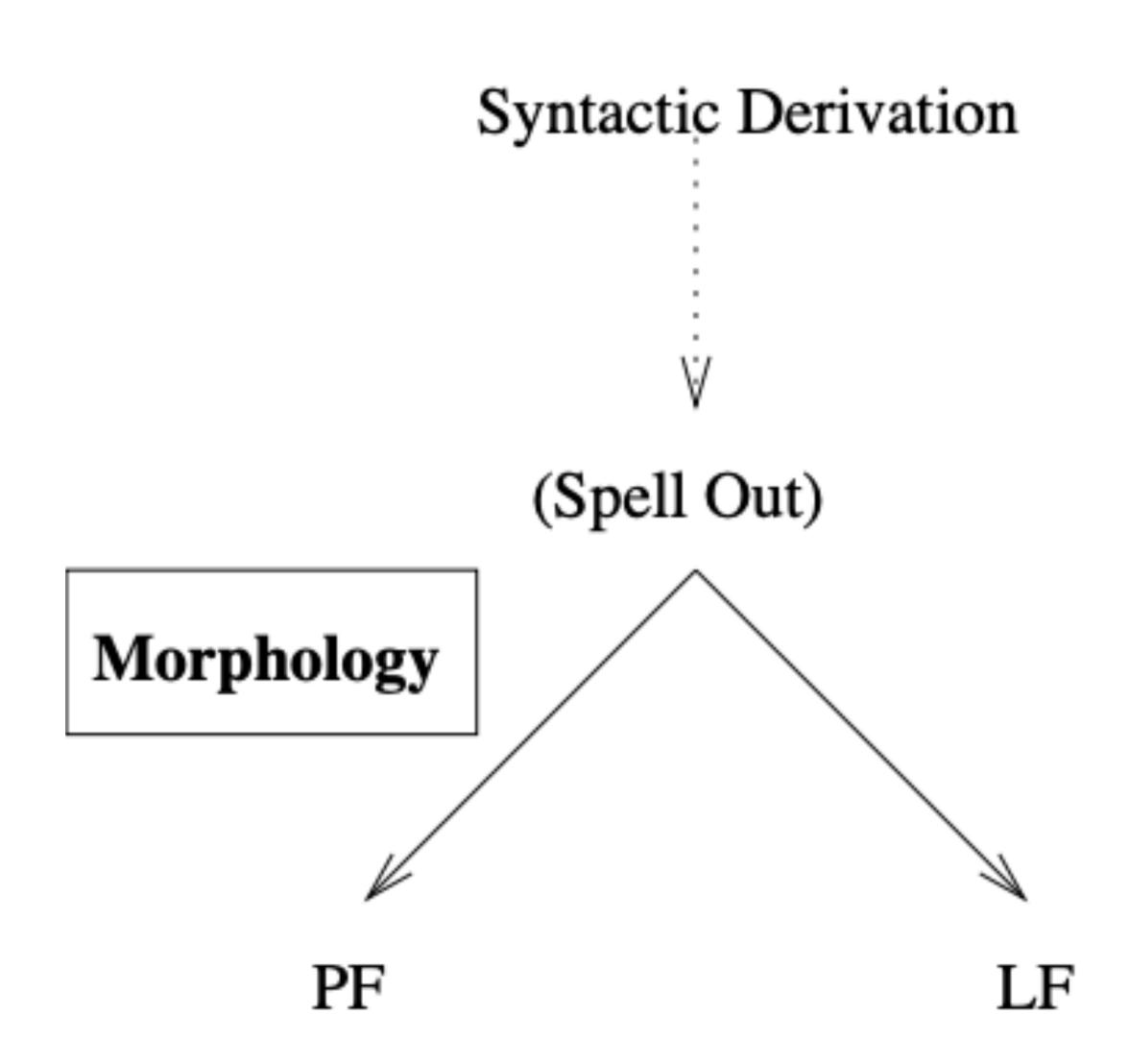
• Prediction: If /(I)J/ is an agreement marker, it is ungrammatical in these configurations \rightarrow **Borne out**

```
(5a) [baldar d͡ʒaʃa-gan] kætʃæ-lær
[child.PL live-RC] street-PL
'the streets [where the children live]'
```

(5b) * [baldar \widehat{dza} [as a-f-kan] kætsæ-lær [child.pl live-pl-rc] street-pl a=16

/(I) san agreement marker

... But what feature does it spell out?


5. /(I) \int \spells out [-singular]

Background assumptions

- Person and number features are binary (Noyer 1992, Bobaljik 2008, Nevins 2007, Despić & Murray 2018)
- Number features: [+singular], [-singular] (Harbour 2003)
- Person features: [+author], [-author], [+participant], [-participant] (Harbour 2016)
- Honorific feature: [honorific]

Background assumptions

- Model of grammar: Morphology interprets the output of the Syntactic Derivation (Halle & Marantz 1993, i.a.)
- Output of Syntax: Abstract features appearing in bundles
- Morphology: Manipulate features
- Vocabulary Insertion adhering to the Subset Principle
 - Vocabulary Items bear features
 - The most specified gets inserted into the terminal
 - VI and terminal feature mismatches are disallowed

Compare 1sg & 1pl

	k-paradigm	z-paradigm	sI-paradigm
1s _G	TAM-m	TAM-mIn	NMLZ-(I)m
2SG	TAM-ŋ	TAM-sIŋ	NMLZ-(I)ŋ
2SG.POLITE	TAM-ŋIz	TAM-sIz	$NMLZ$ - $(I)\eta Iz$
3SG	TAM-Ø	TAM-Ø	NMLZ- $(s)I(n)$

1PL	TAM-k	TAM-BIz	NMLZ-(I)bIz
2PL	$TAM-\eta Ar < -\eta - LAr$	$TAM-sI\eta Ar < -sI\eta - LAr$	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I)ŋIzdAr
			$< -(I)\eta Iz-LAr$
3PL	-(I)f-TAM-Ø	-(I)f-TAM-Ø	$-(I)f$ -NMLZ- $(s)I(n) \sim$
			NMLZ-LAr-(s)I(n)

I submit that the exponents in the sI-paradigm are not specified for [possessive]. The distribution of the sI-paradigm is determined by the category of the preceding marker, a property also displayed by the k- and z-paradigms.

Compare 2sg & 2pl

	k-paradigm	z-paradigm	sI-paradigm
1SG	TAM-m	TAM-mIn	NMLZ-(I)m
2SG	TAM-"	TAM-sIn	NMLZ-(I) y
2SG.POLITE	TAM-ŋIz	TAM-sIz	$NMLZ$ - $(I)\eta Iz$
3sG	TAM-Ø	TAM-Ø	NMLZ- $(s)I(n)$

1PL	TAM-k	TAM-BIz	NMLZ-(I)bIz
2PL	$TAM-\eta Ar < -\eta - LAr$	TAM-sInAr < -sIn-LAr	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I)ŋIzdAr
			$< -(I)\eta Iz-LAr$
3PL	-(I)f-TAM-Ø	-(I)f-TAM-Ø	$-(I)f$ -NMLZ- $(s)I(n) \sim$
			NMLZ-LAr-(s)I(n)

The deletion of /l/ following /ŋ/ is the result of the Syllable Contact Law, a phonological requirement in the language that the onset cannot be more sonorous than the preceding coda (Baertsch and Davis 2001, Gouskova 2004, Washington 2010, Seo 2011).

Compare 2sg.Polite & 2pl.Polite

	k-paradigm	z-paradigm	sI-paradigm
1sg	TAM-m	TAM-mIn	NMLZ-(I)m
2sG	TAM-ŋ	TAM-sIŋ	$NMLZ$ - $(I)\eta$
2SG.POLITE	TAM- <u>y</u> Iz	TAM-sIz	NMLZ-(I) ŋIz
3sg	TAM-Ø	TAM-Ø	NMLZ- $(s)I(n)$

1PL	TAM-k	TAM-BIz	NMLZ-(I)bIz
2PL	$TAM-\eta Ar < -\eta - LAr$	$TAM-sI\eta Ar < -sI\eta - LAr$	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I) ŋIzdAr
			$< -(I)\eta Iz - LAr$
3PL	-(I)f-TAM-Ø	-(I)f-TAM-Ø	$-(I)f$ -NMLZ- $(s)I(n) \sim$
			NMLZ-LAr-(s)I(n)

Desonorization of /l/ following obstruents is also the result of the Syllable Contact Law (Baertsch and Davis 2001, Gouskova 2004, Washington 2010, Seo 2011).

Compare 3sg & 3PL

	k-paradigm	z-paradigm	sI-paradigm
1s _G	TAM-m	TAM-mIn	NMLZ-(I)m
2sG	TAM-ŋ	TAM-sIŋ	NMLZ-(I)ŋ
2SG.POLITE	TAM-ŋIz	TAM-sIz	$NMLZ$ - $(I)\eta Iz$
3sG	TAM-Ø	TAM-Ø	NMLZ-(s)I(n)

1PL	TAM-k	TAM-BIz	NMLZ-(I)bIz
2PL	$TAM-\eta Ar < -\eta - LAr$	$TAM-sI\eta Ar < -sI\eta - LAr$	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I)ŋIzdAr
			$< -(I)\eta Iz-LAr$
3PL	-(I)∫-TAM-Ø	-(I)∫-TAM-Ø	$-(I)$ \int -NMLZ- $(s)I(n) \sim$
			NMLZ-LAr-(s)I(n)

(I) spells out [-singular]

But only with 3PL subjects

- /(I) ʃ/ is *not* used in 1PL, 2PL and 2PL.POLITE agreement markers
- (6) Biz Wswk-Kœl-gœ bar-(*wʃ)-tw-k.

 1PL Issyk-Kul-DAT go-(*PL)-PST-1PL

 Intended: 'We went to the Issyk-Kul.'
- (7a) Siz Wswk-Kœl-gœ bar-(*wʃ)-tw-ŋar. (< ŋ-LAr)

 2PL

 2PL Issyk-Kul-DAT go-(*PL)-PST-2PL

 Intended: 'You(pl) went to the Issyk-Kul.'
- (7b) * Siz Wswk-Kœl-gœ bar-wʃ-tw-ŋ. 2PL
 2PL Issyk-Kul-DAT go-PL-PST-2
 Intended: 'You(pl) went to the Issyk-Kul.'

4. Plural Fission

2PL, 2PL.POLITE & 3PL exponents are NOT mono-morphemic

	k-paradigm	z-paradigm	sI-paradigm
1s _G	TAM-m	TAM-mIn	NMLZ-(I)m
2sG	TAM- <i>y</i>	TAM-sIŋ	NMLZ-(I)ŋ
2SG.POLITE	TAM- <u>nIz</u>	TAM-sIz	NMLZ-(I) ŋIz
3sG	TAM-Ø	TAM-Ø	NMLZ-(s)I(n)

1PL	TAM-k	TAM-BIz	NMLZ-(I)bIz
2PL	$TAM-\underline{\eta Ar} < -\underline{\eta - LAr}$	TAM-sInAr < -sIn-LAr	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I) ŋIzdAr
			$< -(I)\eta Iz - LAr$
3PL	<i>-(I)∫-</i> TAM-∅	<i>-(I)∫-</i> TAM-∅	$-(I) \int -NMLZ - (s) I(n) \sim$
			NMLZ-LAr-(s)I(n)

Postsyntactic operations

- Agreement on the T (or D, in the case of nominalized predicates) node gets evaluated in the course of the syntactic derivation
- At this point agreement features consist of just one feature bundle
- Question: How come that two exponents correspond to one feature bundle?

Postsyntactic operations

• Question: How come that two exponents correspond to one feature bundle?

```
[-author, +participant, -singular] \leftrightarrow /ŋ-LAr/
[-author, +participant, +honorific -singular] \leftrightarrow /ŋIz-LAr/
```

Postsyntactic operations

• Question: How come that two exponents correspond to one feature bundle?

```
[-author, +participant, -singular] \leftrightarrow /ŋ-LAr/
[-author, +participant, +honorific -singular] \leftrightarrow /ŋlz-LAr/
```

• Answer:

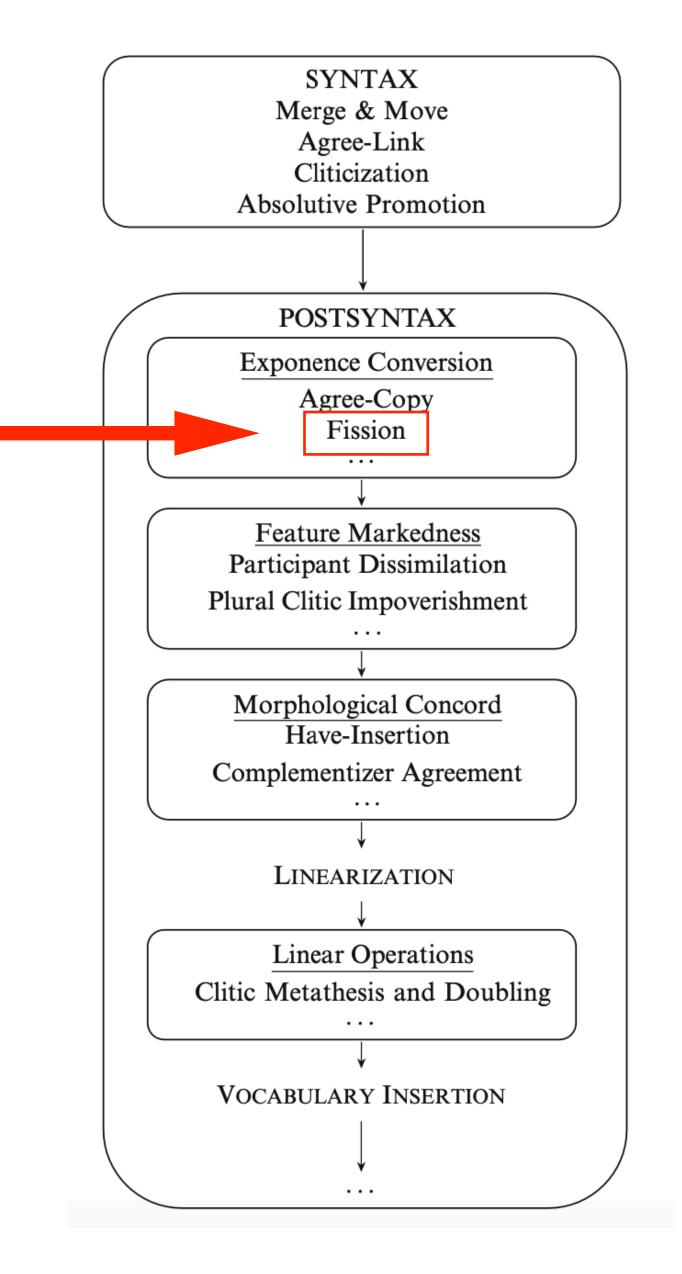
- The output of the syntactic derivation is sent to Spell Out
- This representation is subject to the postsyntactic operation fission

```
[-author, +participant] \Leftrightarrow /ŋ/
[+honorific] \Leftrightarrow /Iz/
[-singular] \Leftrightarrow /LAr/
```

Fission

- Fission accounts for "one-to-many mapping" phenomena (Noyer 1992, Halle & Maranz 1993, Halle 1997)
- Ex

Two views on fission

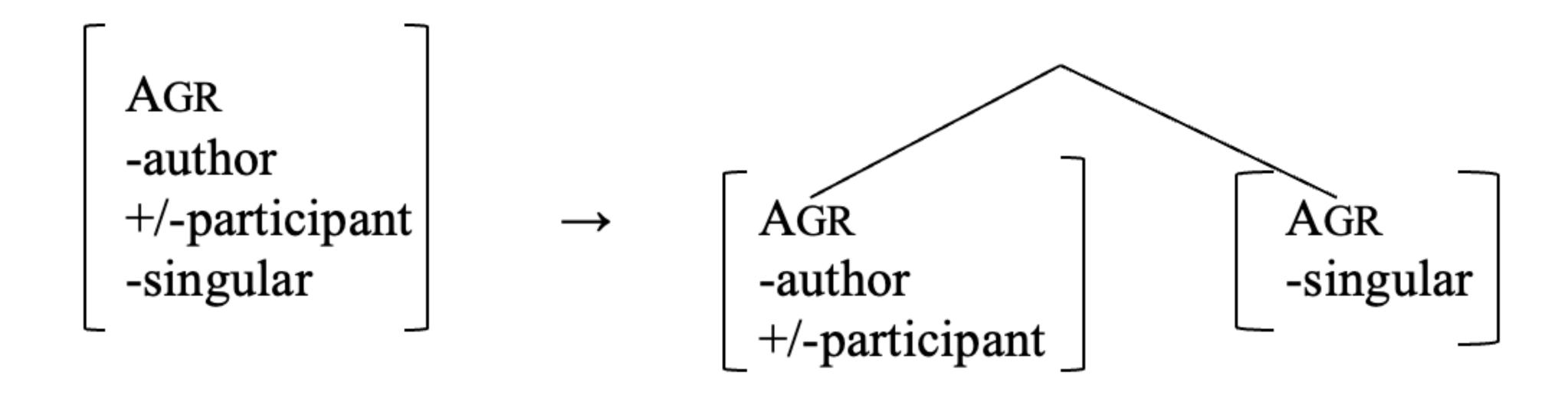

- Main point of departure: When fission takes place
- 1. Fission takes place at the same time as Vocabulary Insertion (Noyer 1992, Halle 1997, and with slightly different theoretical apparatus Harbour 2008)

 In the course of Vocabulary Insertion a subsidiary terminal is created when the inserted exponent's own features do not fully match the features of the terminal
- 2. Fission precedes Linearization and Vocabulary Insertion (Arregi & Nevins 2012)

Two views on fission

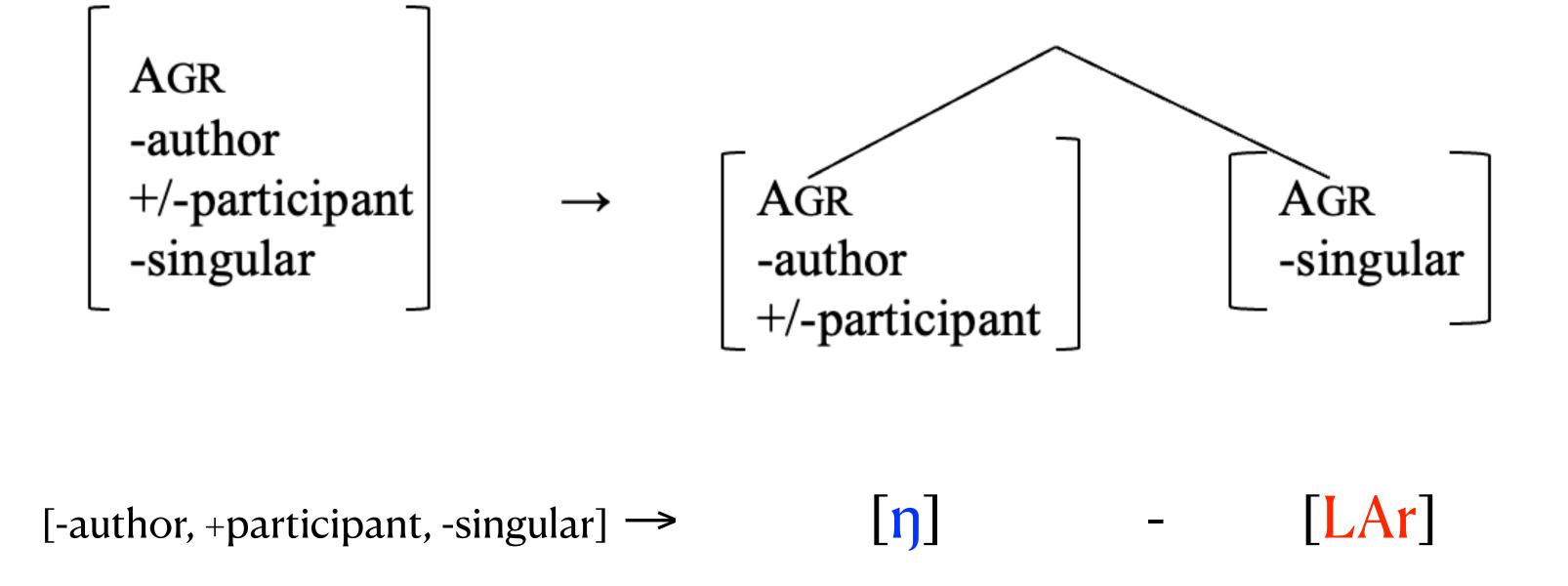
Fission precedes Linearization and Vocabulary Insertion (Arregi & Nevins 2012)

Arregi & Nevins 2012: 4, Fig. 1.1.



Arregi & Nevins' (2012) Fission

• Fission targets feature bundles of a given category containing two specific features



Proposal: Plural Fission

• This explains why 1SG-1PL are mono-morphemic, but 2PL-3PL are not

Proposal: Plural Fission

- 2PL and 2PL.POLITE: [person]-[number]
- Agr[-author, +participant, -singular] \rightarrow Agr[-author, +participant] Agr[-singular]
 - $2PL: /(I)\eta Ar/(<(I)\eta-LAr)$, $2PL.POLITE: /(I)\eta IzdAr/(<(I)\eta Iz-LAr)$

- 2PL and 2PL.POLITE: [person]-[number]
- Agr[-author, +participant, -singular] -> Agr[-author, +participant] Agr[-singular]
 - $2PL: /(I)\eta Ar/ (<(I)\eta LAr), 2PL.POLITE: /(I)\eta IzdAr / (<(I)\eta Iz-LAr)$

- 3PL: [number]-[person]
- Agr[-author, -participant, -singular] -> Agr[-singular] Agr[-author, -participant]
 - /NMLZ-LAr-(s)I(n)/ (optional 3PL in the sI-paradigm)

	k-paradigm	z-paradigm	sI-paradigm
2 _{PL}	$TAM-\eta Ar$ < $-\eta - LAr$	TAM-sInAr < -sIn-LAr	$NMLZ-(I)\eta Ar < -(I)\eta - LAr$
2PL.POLITE	$TAM-\eta IzdAr < -\eta Iz-LAr$	TAM-sIzdAr < -sIz-LAr	NMLZ-(I)ŋIzdAr
			$< -(I)\eta Iz - LAr$
3 _{PL}	-(I)f-TAM-Ø	$-(I)\int -TAM-\emptyset$	$-(I) \int -NMLZ -(s) I(n) \sim$
			NMLZ-LAr-(s)I(n)

- The reason 2PL & 2PL.POLITE do not participate in Lowering is that the number features are not adjacent to TAM
- In 3PL [-singular] is adjacent to TAM, a highly unusual configuration (Trommer 2003), which motivates Lowering

5. Loweing

Postsyntactic movement operations

- Embick & Noyer 2002:
 - Lowering
 - Before Vocabulary Insertion
 - Operates on hierarchical structures \rightarrow It can reference a specific functional head
 - Feeds allomorphy
 - Local Dislocation
 - After Vocabulary Insertion/linearization
 - Operates on non-hierarchical, linearized structures
 - Does not feed allomorphy
- There are other views, e.g., Arregi & Nevins' (2012, 2018) metathesis in the Generalized Reduplication framework (Harris & Halle 2005)

Let's look at the Kyrgyz predicate template

VERB STEM	SLOT 1	SLOT 2	AGREEMENT	
	ASPECT	TENSE		
oku-	mak-	æle-	siŋ	'You were
				supposed to read'
oku-	mak-	æken-	siŋ	'(I heard that) You
				are going to read'

For this view of Slot-1 and Slot-2 suffixes see Jendraschek 2011, Key & Schreiner 2014

Let's look at the Kyrgyz predicate template

VERB STEM	SLOT 1	SLOT 2	AGREEMENT	
	ASPECT	TENSE		
oku-	mak-	æle-	siŋ	'You were
'read'	PRSP	PST	2sg	supposed to read'
oku-	mak-	æken-	siŋ	'(I heard that) You
'read'	PRSP	EVID	2sg	are going to read'

For this view of Slot-1 and Slot-2 suffixes see Jendraschek 2011, Key & Schreiner 2014

- If the movement of /(I)J/ is a case of Local Dislocation, the following is predicted to be grammatical:
- [-singular] is predicted to show up between Slot-1 and Slot-2 \rightarrow Not borne out

VERB STEM	SLOT 1		SLOT 2	AGREEMENT
	ASPECT		TENSE	
oku-	mag-	այ-	æle-	Ø
'read'	PRSP	PL	PST	3
oku-	mag-	այ-	æken-	Ø
'read'	PRSP	PL	EVID	3

• These forms are gibberish

• The correct forms are the following:

VERB STEM		SLOT 1	SLOT 2	AGREEMENT
		ASPECT	TENSE	
oku-	J -	mak-	æle-	Ø
'read'	PL	PRSP	PST	3
oku-	J -	mak-	æken-	Ø
'read'	PL	PRSP	EVID	3

• - [-singular] is **Lowered** (in the sense of Embick & Noyer 2002)

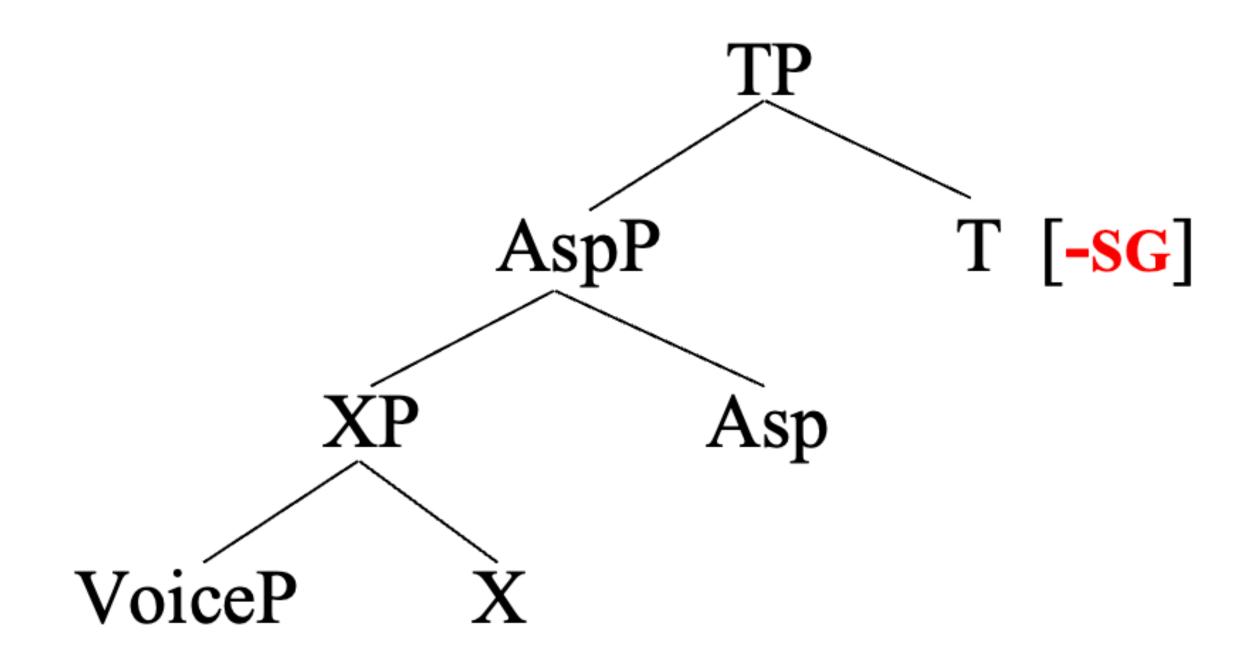
- Domain between VoiceP and Slot-1 (AspP) contains:
 - Low Aspect projections
 - Modality

- Domain between VoiceP and Slot-1 (AspP) contains:
 - Low Aspect projections: /(I)p dzyr/ 'habitual', ...
 - Modality
- (8a) Baldar bul kitep-ti oku-p dzyr-ys-cet. child.pl this book-acc read-habit-pl-3cont 'The children read this book habitually.'

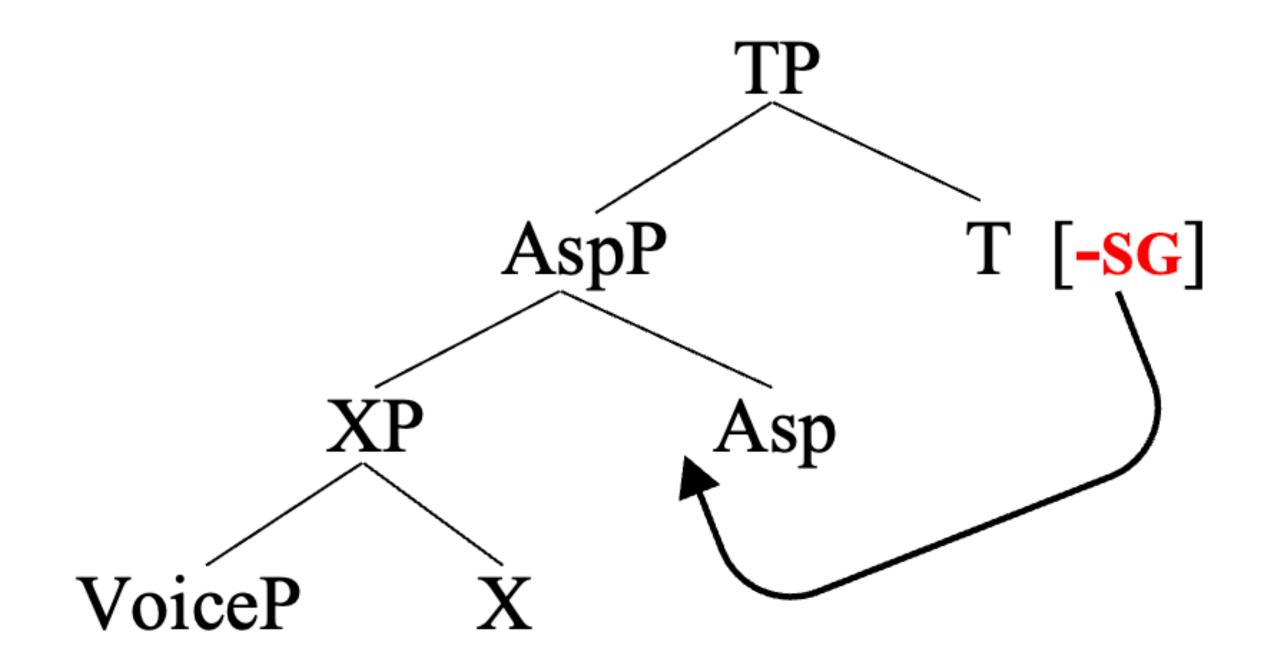
- Domain between VoiceP and Slot-1 (AspP) contains:
 - Low Aspect projections: /(I)p dzyr/ 'habitual', ...
 - Modality
- (8a) Baldar bul kitep-ti oku-p dzyr-ys-cet. child.PL this book-ACC read-HABIT-PL-3CONT 'The children read this book habitually.'
- (8b) *Baldar bul kitep-ti oku-ʃ-up dʒyr-(yʃ)-œt. child.pl this book-acc read-pl-habit-(pl)-3cont

- Domain between VoiceP and Slot-1 (AspP) contains:
 - Low Aspect projections
 - Modality: /A/j al/ 'ability'
- (9a) Baldar oku-j al-wʃ-at.

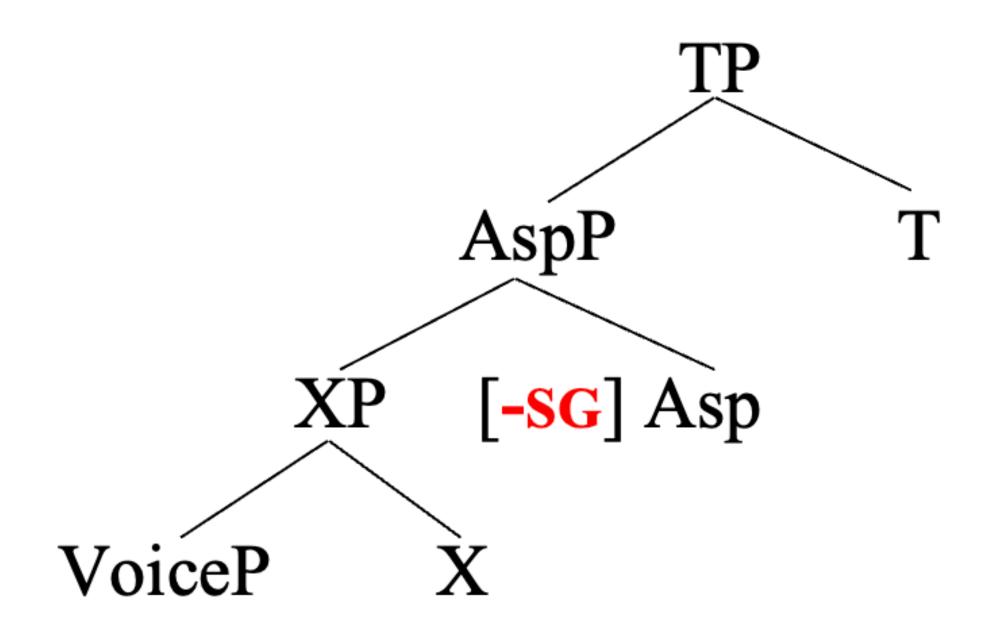
 child.PL read-ABIL-PL-3CONT


 'The children can read.'

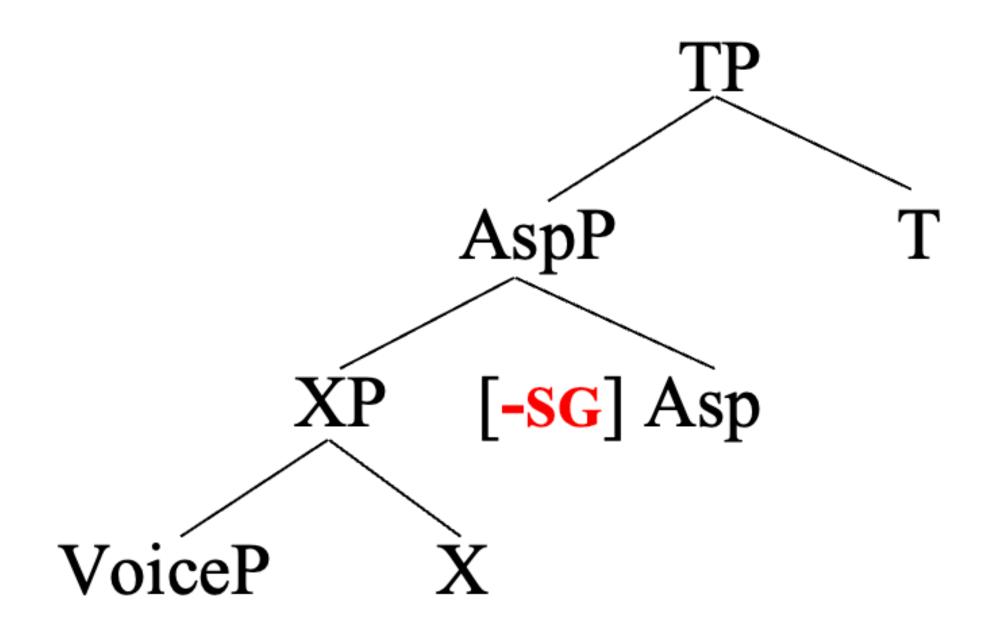
- Domain between VoiceP and Slot-1 (AspP) contains:
 - Low Aspect projections
 - Modality: /A/j al/ 'ability'
- (9a) Baldar oku-j al-wʃ-at.


 child.PL read-ABIL-PL-3CONT

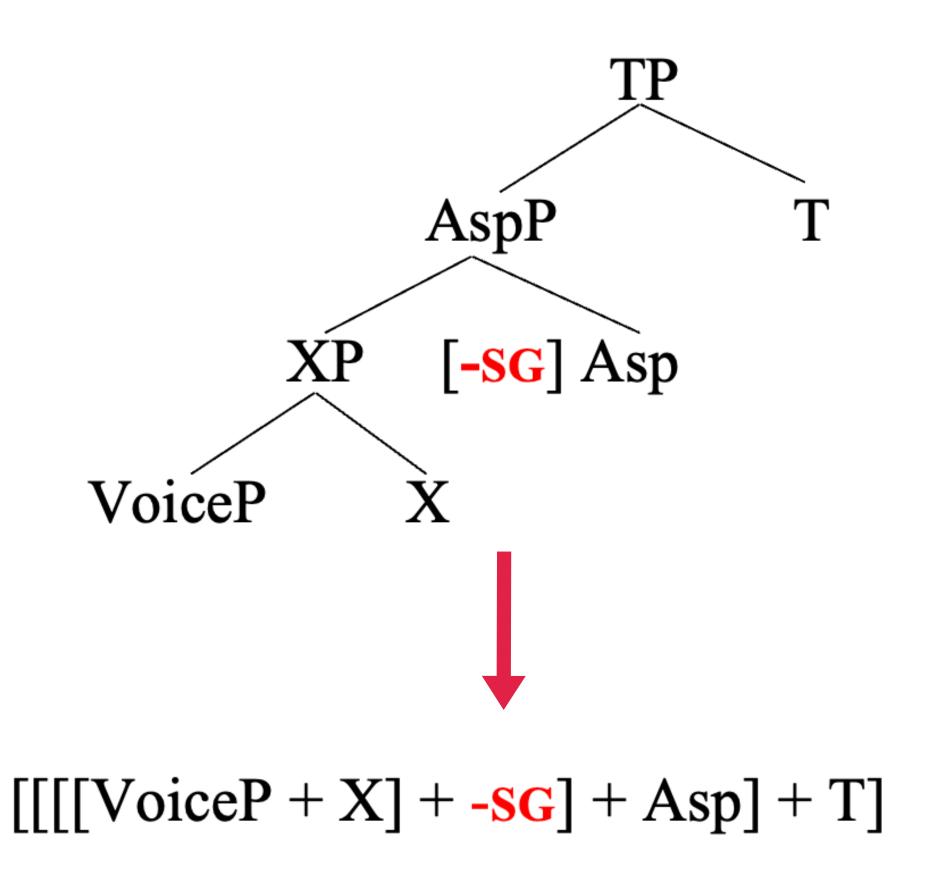
 'The children can read.'
- (9b) * Baldar oku-ʃ-a al-(wʃ)-at. child.pl read-pl-abil-(pl)-3CONT


Input structure

Lowering



Output structure



6. Vocabulary Insertion

Linearization

Linearization

• Output of Linearization:

$$[[[VoiceP + X] + -SG] + Asp] + T]$$

- /LAr/ is specified for [-singular]
- How is it blocked in this context?

(10) * Baldar Usuk-Kœl-gœ bar-lar-dw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'

- (10) * Baldar Wswk-Kœl-gœ bar-lar-dw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'
- (11) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'

- (10) * Baldar Wswk-Kœl-gœ bar-lar-dw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'
- (11) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'
- /(I)ʃ/ is contextually specified for [+V] (Baker 2003)

• /(I)ʃ/ is contextually specified for [+V] (Baker 2003)

```
[-singular] \leftrightarrow /(I) \int | [+V]__
[-singular] \leftrightarrow /LAr/
```

(11) Baldar Wswk-Kœl-gœ bar-wʃ-tw. child.pl Issyk-Kul-dat go-pl-3pst Intended: 'The children went to the Issyk-Kul'

7. Conclusions

- /(I) sthe spell-out of [-singular] but only with 3PL subjects
- /(I) ʃ/ is unusually positioned (precedes TAM/NMLZ)

- /(I) \(\int \) is the spell-out of [-singular] but only with 3PL subjects
- /(I) ʃ/ is unusually positioned (precedes TAM/NMLZ)
- Proposal: Postsyntactic operations
 - Plural Fission: targets [-author, -singular]
 - Explains why 2PL, 2PL.POLITE and 3PL are bi-morphemic
 - Output of Fission for 3PL: TAM-[number]-[person] → drives Lowering only in 3PL

- /(I) sthe spell-out of [-singular] but only with 3PL subjects
- /(I) s unusually positioned (precedes TAM/NMLZ)

• Proposal: Postsyntactic operations

- Plural Fission: targets [-author, -singular]
 - Explains why 2PL, 2PL.POLITE and 3PL are bi-morphemic
 - Output of Fission for 3PL: TAM-[number]-[person] → drives Lowering only in 3PL

Lowering

- [-singular] is Lowered to be adjacent to Asp
- Explains why movement feeds allomorphy: Movement must occur before Vocabulary Insertion

- /(I) \(\int \) is the spell-out of [-singular] but only with 3PL subjects
- /(I) ʃ/ is unusually positioned (precedes TAM/NMLZ)

• Proposal: Postsyntactic operations

- Plural Fission: targets [-author, -singular]
 - Explains why 2PL, 2PL.POLITE and 3PL are bi-morphemic
 - Output of Fission for 3PL: TAM-[number]-[person] \rightarrow drives Lowering only in 3PL

Lowering

- [-singular] is Lowered to be adjacent to Asp
- Explains why movement feeds allomorphy: Movement must occur before Vocabulary Insertion

Vocabulary Insertion

- [-singular] can be spelt out by $\frac{LAr}{or} \frac{(I)}{depending on the preceding category$
- /(I) \(\int \) is contextually specified for [+V]

Implications

- Turkic 3PL agreement markers can all be captured by parametrized operations:
 - Kazakh: impoverishment of [-singular] (in the context of [-author, -participant]
 - Turkish: No Lowering, or Lowering to T (cf. Güneş 2021)
 - Kyrgyz: Lowering to Asp

- What we learned about post syntactic operations:
 - Fission precedes Vocabulary Insertion (pro Arregi & Nevins 2012)

• Taking the exponent /(I) // to bear [-singular], also accounts for other uses of /(I) // where it is inserted in terminals that define event plurality (Ótott-Kovács, in prep)

References

Appendix

Proposal

- 2PL and 2PL.POLITE: [person]-[number]
- Agr[-author, +participant, -singular] -> Agr[-author, +participant] Agr[-singular]
 - $2PL: /(I)\eta Ar/ (<(I)\eta LAr), 2PL.POLITE: /(I)\eta IzdAr / (<(I)\eta Iz-LAr)$

- 3PL: [number]-[person]
- Agr[-author, -participant, -singular] -> Agr[-singular] Agr[-author, -participant]
 - /NMLZ-LAr-(s)I(n)/ (optional 3PL in the sI-paradigm)

Let's consider an alternative

- 2PL, 2PL.POLITE, 3PL: [person]-[number]
 - Agr[-author, +participant, -singular] \rightarrow Agr[-author, +participant] Agr[-singular]

- Two facts to explain:
 - 1. Why [-singular] is not Lowered in 2PL, 2PL.POLITE?
 - 2. How can we derive the optional order attested in 3PL in the sI-paradigm?

Let's consider an alternative

- Two facts to explain:
 - 1. Why [-singular] is not Lowered in 2PL, 2PL.POLITE?

- Lowering of [-singular] is conditioned by [-participant]
- 2PL, 2PL.POLITE have [+participant] → [-singular] is not Lowered
- 3PL has [-participant] → [-singular] is Lowered

Let's consider an alternative

- Two facts to explain:
 - 2. How can we derive the optional order attested in 3PL in the sI-paradigm?

```
-(I) \int -\text{NMLZ-(s)I(n)} ~

NMLZ-LAr-(s)I(n)
```

- NMLZ is: AspP + DP
- [-singular] is either Lowered
 - to Asp, or
 - to $[\pi]$, if the preceding head is [D]

Some advantages of the proposed analysis

- The answer to Q2 is immediately obvious:
 - The feature ordering in NMLZ-LAr-(s)I(n) is the result of the output of Fission
- Lowering can be motivated (however stimulative this motivation may be)
 - TAM-[-singular] (a very unusual (~ dispreferred) ordering) drives Lowering

Some advantages of the proposed analysis

- In possessive structures the plural suffix /LAr/ precedes the possessive agreement suffix
- (i) kwz-dar-w (Kyrgyz)
 girl-PL-3(POSS)
 'his/her/their daughters'
- Hypothesis: Diachronic change whereby the plural gets reanalyzed as a [-singular] agreement marker
 - In fact, we know that this happened in Turkish
- (ii) kız-lar-ı (Turkish) girl-PL-3(POSS)
 - 1. 'His/her daughters'; 2. 'Their daughters'; 3. 'Their daughter(SG!)'
 - In the 3rd meaning, the feature ordering is [AGR [-singular][-author, -participant]]
 - This ordering gets generalized to all 3PL agreement markers

Metathesis analysis á la Arregi & Nevins 2012

• Accounting for the 3PL in the k and z-paradigms:

```
Asp T \pi # \rightarrow
[Asp T \pi > < # ] \rightarrow
Asp T \pi # Asp T \pi # \rightarrow
# Asp T \pi
```

• This could be parametrized to the [-participant] feature in $[\pi]$

Metathesis analysis á la Arregi & Nevins 2012

• Accounting for the variable feature ordering in 3PL in the sl-paradigm:

```
NMLZ-LAr-(s)I(n)
Asp D \pi \# \rightarrow
\lceil \pi > < \# \rceil \rightarrow
\pi \# \pi \# \rightarrow
Asp-D \# \pi
   -(I)\int -NMLZ-(s)I(n)
Asp D \pi \# \rightarrow
[Asp D \pi > < \#] \rightarrow
Asp D \pi # Asp D \pi # \rightarrow
# Asp D π
```

This could be parametrized to the D head